If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+4b-41=0
a = 1; b = 4; c = -41;
Δ = b2-4ac
Δ = 42-4·1·(-41)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6\sqrt{5}}{2*1}=\frac{-4-6\sqrt{5}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6\sqrt{5}}{2*1}=\frac{-4+6\sqrt{5}}{2} $
| 1/3(x-12)=1/6(x-6) | | 6x−2x=5 | | 3a=24* | | v=46010-46010(20)(27) | | 9=3+z | | 32=(2L+2)+2w | | 5{m-3}+1=21 | | v=46010-46010(27)(1) | | 3x2.4-5=16 | | X2+12x+43=(x+A)2+B | | 338=x(3x)2 | | 2x-10=3x+4× | | E=6s | | -12x+10=-15 | | x+5x/9-10=3x-1x/3 | | 2b+10=3b+18 | | 7=45-3(12-x) | | 3z+12=2z+8 | | 2b-4=3b-9 | | 8=26-7b | | -6=5y+9 | | 33x+5=3x-1 | | 6.8+9.3=9.4+3.4(2-5x) | | 3x-9-3=0 | | 720=72x+288 | | 216=60x+240 | | 0.36^x=0.02 | | 216=30(2x+8) | | P=i-47.50 | | 12x18=30(2x+8) | | G=j+13 | | (12x18)=30(2x+8) |